

American Journal of Artificial Intelligence
2021; 5(1): 1-16

http://www.sciencepublishinggroup.com/j/ajai

doi: 10.11648/j.ajai.20210501.11

ISSN: 2639-9717 (Print); ISSN: 2639-9733 (Online)

An Intelligent Agent Model and a Simulation for a Given
Task in a Specific Environment

Safa'a Yousef Abu Hadba, Ibtehal Nafea

Computer Science and Engineering College, Taibah University, Al-Mdinah Al-Monwara, Saudi Arabia

Email address:

To cite this article:
Safa'a Yousef Abu Hadba, Ibtehal Nafea. An Intelligent Agent Model and a Simulation for a Given Task in a Specific Environment. American

Journal of Artificial Intelligence. Special Issue: Emerging Trends in Artificial Intelligence with Machine Learning and Nature Inspired

Algorithms. Vol. 5, No. 1, 2021, pp. 1-16. doi: 10.11648/j.ajai.20210501.11

Received: November 11, 2020; Accepted: January 28, 2021; Published: February 10, 2021

Abstract: This paper introduces An Intelligent Agent Model for a Given Task in a Specified Environment. The methodology

adopted in this work is based on mixing computational methods and functions to build an intelligent agent model. This paper

focuses on building an intelligent agent model as a knowledge-based system that interacts with a dynamic environment for

performing tasks. The class structure used to represent the environment in the knowledge base relies on three types of knowledge

representation forms: production rule, semantic net, and frames. Each object in the environment is an instance of the class

environment. Algorithms and functions are used to get knowledge from the state space of an environment to construct a task. The

intelligent agent model can understand the environment from any position and can detect many subtasks, arrange them in a queue

for execution, and can make decisions at a high scale of thinking. This model is proposed to maintain that an agent which is

characterized by sufficiently low computational costs can interact with the environment in real-time but is powerful enough to

reach the assigned goals in complex environments and within an acceptable time period. The intelligent agent model can

calculate persistent changes in an external dynamic environment and any unexpected change, for example detecting the being of

any problem in the environment and avoiding it. The intelligent agent can also learn and take reasonable decisions in the dynamic

environment and automatically select an action based on task features. Thus, the intelligent agent can resolve several different

kinds of difficulties.

Keywords: Intelligent Agent, Dynamic Environment, Performance

1. Introduction

An intelligent agent could be defined as a program that

collects information or performs some other service without

user present, sometimes called a ‘bot’ (shortcut for robot). The

main abilities of intelligence are: acting, sensing,

understanding, reasoning, and learning. Therefore, intelligent

agents can resolve both easy and difficult problems, that need

minimal knowledge engineering effort with perfect

performance, compared with human-engineered intelligent

agents. To outline an agent, we must define the task

environment, type of environment, number of agents, and

access the task in the environment [1].

There are two aspects in task specification that should be

considered: the task environment space and the task action

space. Thus, compatible with these two aspects, to specify and

perform certain tasks, the next problems have been recognized:

1. How to explain the state space and action space in the

environment; and

2. Identify and compile the required information and

identify and design functions/algorithms (or utilize

existing ones) required to practice the agent to perform

the essential tasks.

The new development in the design, for an agent to become

an intelligent agent, can be concrete in various environments

to save money and effort and decrease work load. The

intelligent agent can achieve many tasks respecting to the

considerable environment, particularly in dealing with spatial

data to support the security and emergency services overcome

any problems in the environment and new mathematical

equations to calculate whether intersection paths have

problems or intersections, and ways to keep away from them.

These search techniques rely on tested information, which

is established in the problem space. Each object in the

2 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

environment has an initial weight value, which changes with

the transition of objects. Each object is related with the

object-environment. Experiential search techniques are not

related to any constraints and changes in the environment can

provide a faster solution.

For an untrained agent, finding an object in any

environment can be a very hard and time-consuming task. On

the other hand, the same process for a trained professional

may be quite a simple process.

The objective of developing a model of an intelligent agent

in any environment, mainly in dealing with spatial data, is to

help workers in such an environment to search and detect an

object or complete a task.

Searching for a specific object in an environment needs

much effort and commonly aspects several problems. There

are some problem-solving methods used by humans that can

be useful in this situation. Therefore, the implementation of

these problem-solving methods, such as a software model,

will be quite useful to people, especially those who working in

risky environments.

This work is based on our previous work [10] which aims to

utilize an intelligent agent that knows an environment and can

carry out any action separately. The intelligent agent can

interrelate with the environment and transaction between

states without any user intervention, or in other words,

unsupervised. Thus, the intelligent agent will work towards

the specified aim by recalling the stored knowledge from the

knowledge basis to complete that job. Moreover, the

intelligent agent can interrelate with a dynamic environment

and keep away from any obstacles. In this paper, we offer

relevant works. Then we present the design’s description of

the proposed model of an intelligence agent as a

knowledge-based system composed with the illustration of the

knowledge basis, action space, and environment. After that,

we show the design and implementation of the proposed

model. Lastly, we conclude and state the future work.

2. Related Works

In recent years, the way that an intelligent agent interacts

with an environment and completes a task requirement

representation, has concerned numerous researchers in the

area of intelligent agents and artificial intelligence.

Woolderidge et al. [2] declare that they use the results

determined in several theories to analyze the difficulty of

agent fulfillment for three classes of task specifications,

achievement and maintenance tasks, and tasks specified as

arbitrary Boolean set of achievement and maintenance tasks.

We explored how the features of an agent’s units are

affected since the agent must interact with an unidentified

environment and, simultaneously, build an incremental and

inductive model of it through symbolic learning. We need to

maintain that an agent presenting adequately minimum

computational budgets can interrelate with the environment in

real-time however is strong enough to reach the allocated aims

in complicated environments and within a suitable time.

Balduccini and Lanzarone [3] present an agent who

independent interacts with an unidentified environment and

constructs an incremental and inductive model of it. The

important thoughts dealt with are:

1) Autonomy: The agent cannot depend on an oracle

controlling its deductive processes.

2) Instrumentality: The agent should be capable to

incessantly update the environment’s model as stated by

the knowledge resultant from interaction, exploiting as far

as possible the information it has previously developed.

3) Inductivity: The agent should suppose rules based on

detected examples, and it is, so, essential for it to

continually verify the validity of the rules it has caused.

4) Unknown environment: The agent should complete well

even once starting in a ‘zero knowledge’ state.

In the 1970s, it was lastly known that to produce a machine

solve an intellectual problem, one had to know the solution.

Knowledge can be declared as a group of facts, events,

procedures, and meta-knowledge. Typically, for a human to carry

out a specific task, the distinct should recall the knowledge from

his knowledge base, which is linked to that certain task.

The terms “procedural knowledge” and “path (sometime

called route) knowledge” have distinct thoughts and are often

misunderstood. The knowledge path has been defined by Niels [4]

as, “A set of procedures that can be used only if an external entity

explicitly specifies the initial situation and a desired end situation.”

It includes information about the arrangement of actions required

to follow a specific path. A knowledge path is considered as

knowledge around the actions to be achieved in the environment

to effectively navigate paths between distant places, specially

between a beginning and a destination.

Table 1. Related works comparison.

Types of

Environment
Number of Agents

Accessing Task in the

Environment

Implementation of a Learning, Planning

and First-principal Logic AI Techniques

Using an Agent

Communication Language

(A)
1-Continuous

2-Dynamic

Single Intelligent

Agent

1-Fully observable

2-Stochastic

3-Sequential

Yes
Yes

Tell agent task about the write

(B) Discrete
Single Intelligent

Agent

1-Fully observable

2-Deterministic domain
No No

(C) Static Discrete
Single Intelligent

Agent

Deterministic Sequential

Fully
No No

(D) Dynamic Continuous Multi Sequential No No

Thorndyke and Goldin (1983) [5] describe knowledge kinds in the environment and refer to them as spatial

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 3

knowledge at three stages of information: landmark,

procedural, and survey knowledge, for which each stage

constructs on earlier stage.

Table 1 represents the comparison between four intelligent

models A, B, C and D that are described in [6, 7, 11, 12]. The

first row presents An Intelligent Agent Model and a

Simulation for a Given Task in a Specific Environment [6].

Though, the second row demonstrates the implementation of

an intelligent agent in a known, observable, discrete, and

deterministic environment using a scriptable game-engine [7].

C is a static discrete environment using Crossword Puzzles in

teaching [11]. The last row presents D which is agent-based

traffic control and management systems [12].

3. Model Architecture

This part illustrates the methodology and the design of the

proposed model. The methodology is the Software

Development Life Cycle (SDLC) [9] which is divided into

different phases with different organizations as the following:

1) Project Initiation & Planning

This phase is for describing the project’s plan. It consists of

the scope of the project, project organization, plans, estimated

cost and risks management. In addition, it gives an estimation

about the management plans of each thing in the project

including resources, time budget and risks.

2) Analysis: This phase is for describing the requirements

that are needed to develop the system. It includes the

functional and non-functional requirements. Also, use

cases that show the interactions between the user and the

system and the requirements analysis. In addition, the

databases design of the system. Moreover, the

requirements needed for the project are going to be

described and organized. Also, analysis of the system,

and a description of the process model.

3) Design: This phase is for describing the design of the

system. It involves internal and external user interfaces,

a brief overview of the code and relationships between

the objects. In addition, a full design presentation of the

project with every necessary detail related to the system.

4) Implementation: This phase shows the real

implementation of the system in terms of making the

system ready to be used by the users.

5) Testing: This phase shows the testing of the whole

project after implementation with all the tools, and

methodologies used.

6) Maintenance: This phase is to ensure that the system is

working smoothly without any problem. Also, support

for the user is presented in this phase.

For design model it is built on the functional model of the

human system as a knowledge-based system. It contains the

definition of knowledge representation and how it is used in

the proposed model. It similarly contains knowledge

representation for the environment and state space and action

composed with a meaning of the main algorithms as processes

in a knowledge-based system. Once these three parts are ready,

the modules are integrated into their processes, i.e., each

module has a task that accompaniments other modules’ tasks.

The construction of a knowledge-based system relies on the

proposed functional model of the human system, which was

made according to the route of the vertical top-to-bottom

arrow to the left of Figure 1 [8, 10], as understood from

relation with the environment unit, human inference engine,

and long-term memory.

Figure 1. Functional Model of human System.

The knowledge-based system can be represented by the

functional model of the human system but will be

implemented as shown in Figure 2 from the bottom-to-top

direction seen by the vertical arrow on the left side. Therefore,

relation with the environment unit will be as the user interface.

The inference engine will be human but will be beheld to

characterize untouchable entities, which are; willingness,

needs, and vision, Incentives, hobbies, and the outcome of the

environment as a problem-solving method, search technique,

and reasoning agent. Lastly, the long-term memory will be the

knowledge base. The most significant section of the

knowledge-based system is the knowledge base itself, then all

the other sections of the system depend on its implementation.

Figure 2. Structure of the Knowledge-based System Functional Model of

Human System.

Figure 1 shows the structure of the human functional

system and Figure 2 shows the implementation of the

knowledge-based system as a simulation of the functional

model of the human system.

Figure 3 shows the intelligent agent as the knowledge-based

system of using state space and action space for an intelligent

agent model.

The proposed model is built on the common construction of

4 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

the knowledge-based system as shown in Figure 2 and

contains of four modules: user interface, inference engine,

knowledge base, and working memory. Utilizing the proposed

model for searching for an object in an environment requires

the accomplishment of many tasks.

The intelligent model should be able to detect and analyze

the path required for a task. This capability uses the intelligent

agent to extract the needed data and information as knowledge,

giving to the common construction of a knowledge-based

system.

Figure 3. Proposed model of intelligent agent as a knowledge-based system.

A. User Interface Module

The user interface simulates the communication with the

environment unit of the functional model of the human system.

Therefore, this module contains several functions; all

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 5

functions allow the user to interact with the knowledge-based

system. When a user utilizes the intelligent agent, he should

first enter a password and a user name, which allows

interaction with the agent. The user interface contains three

modules as showed in Figure 3:

1) Inserting task specifications: can insert the task within

part of the proposed model, for example, bring book by

ID, bring book by name, replace two books, and return

book to bookcase.

2) Agent communication: this relays on the interaction with

the environment. The intelligent agent model can

estimate the persistent changes in the external dynamic

environment and any unexpected change, like detecting

the presence of any obstacle in the environment and

avoiding it.

3) Updating knowledge: when changing the stored

knowledge and deleting it, and insertions of new

knowledge are applied according to the assumed request

by the end user.

B. Interface Engine

The inference engine includes three modules: problem

solving method, search technique, and reasoning agent. Their

main functions are calling the right knowledge from

knowledge base, when required, to solve a problem, according

to the given statements, and applying a heuristic search

technique. And simplify the ambiguity in the new developed

knowledge inserted in the working memory, by calling an

existing knowledge from the static knowledge base that is

added to the dynamic knowledge base. For instance, while

change happens in the external dynamic environment, such as

observing the existence of an obstacle in the environment and

avoiding it, the intelligent agent recalls the correct knowledge

from the table and uses a heuristic search technique to find a

quick solution.

The reasoning agent is usually one of many techniques,

such as forward chaining, backward chaining, or mixing both.

In this approach, according to the circumstances of the

provided goal to the proposed intelligent agent, we will have

used both.

The algorithms and function will be used by the inference

engine of the intelligent agent. Moreover, these algorithms are

used for obtaining knowledge from the problem’s state space,

the environment’s problem space, and the action’s state space

to complete a specific task.

When we sort objects’ ID, the first phase is the intelligent

agent search for the availability of the object (book) matching

to the experience (in this case, dynamic knowledge). The

intelligent agent then goes to the next phase to finish the task,

finds the start and end points, tests the road of the obstacles,

afterward transits between two points and detects a subtask.

C. Working Memory

The working memory is defined as the place where all

inference engine, user interface and knowledge activities must

be carried out. These activities are:

1) The application of the reasoning agent used: the

reasoning agent can normally be one of several

techniques, for example forward chaining, backward

chaining, or both. In the proposed model, both are used

corresponding to the state of the assumed goal and the

proposed intelligent agent;

2) The application of searching techniques used: applying a

heuristic search technique to refine the ambiguity in the

new acquired knowledge inserted in the working

memory; and

3) The processes of agent interaction within the

environment: the intelligent agent can learn and take

reasonable decisions in the dynamic environment and

regarding any unexpected changes, such as detecting the

being of an obstacle in the environment and avoiding it.

D. Knowledge Base

The knowledge base characterizes the repository of

knowledge for a restricted and specified domain. The

knowledge could be outlined as a group of facts, rules, events,

and meta-knowledge. Generally, knowledge could be either

declarative or procedural. In this paper, both declaratives are

consumed: dynamic and procedural, or static, knowledge.

The basic structure of static knowledge is a knowledge base

that includes domain knowledge used for problem solving.

The formula of a rule can be modified in Horn Clause formula:

Action ← condition1, condition2, … conditioni	
Where	i ≥ 0	and	is	an	integer	number.

Dynamic knowledge includes knowledge developed

through the run time of the system using the interaction of the

user with the proposed system. This knowledge provides cases

for specific problems or facts. The basic structure of dynamic

knowledge is the database that contains a structure of facts

used to be compatible with the (condition) part of instructions

stored in the knowledge base.

Bear in mind, in this work, frames in incorporation with

production rules and semantic networks are all manipulated to

characterize knowledge in the knowledge base.

In 1974, Marvin Minsky proposed the meaning of frames as

structures in which each frame had its own name and a set of

attributes, or slots, associated with it. Wesley (2005) described

why is it was essential to use frames and provided an accepted

method of structured representation of knowledge. In a single

entity, a frame links all essential knowledge regarding a

specific object or perception. The frame prepares a means of

organizing knowledge in slots to explain different attributes

and features of an object.

A semantic network is a directed graph, containing of nodes.

Every node is an object in the environment, and links (arcs)

between objects: a link is the relationship between objects.

Figure 4 clarifies the semantic network for the perception

environment that is applied for indicating knowledge related

with the environment.

6 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

Figure 4. Semantic networks showing some object concepts and properties.

The rule base is a set of the form IF (conditions) THEN (Action) rules. The conditions are a part of a rule that contains zero or more

conditions; the special case of zero occurs in case of a fact. The action part is the goal. Figure 5 illustrates an example of applying the

production system using the working memory.

Figure 5. Production system using working memory.

For each cycle of the production system, the following actions will happen:

1) Selection: select the rules from the rule base, according to the goal.

2) Matching: match the selected rules according to the assertions given in the context (database).

3) Confliction: choose one of the matched rules according to the time and space.

4) Fire (execute) the chosen one.

The environment has several objects and every object combinates another object in the environment; every object denoted by

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 7

the class includes the properties and methods that define the behavior of the object, in which properties describe the distance and

class of the object or its blueprint. Figure 6 illustrates the hierarchical structure of the environment.

Figure 6. Hierarchical Structure of Environment.

Figure 7 illustrates the hierarchical structure of the

environment for the proposed model library and presents the

object that includes the library. For instance, the bookcase and

the table and the composite of objects, for example bookcase

combined shelf and shelf combined book; each object includes

properties and measurements commensurate with the item

having this object, which also fits with the environment and the

location of each object, depending on the design environment.

Figure 7. Hierarchical Structure of the Proposed Model (Library).

4. Case Study

In the proposed case of the library environment, the spaces

will be distributed into two kinds: how to represent

environment space (state space) and how to characterize

(action space) an event. Thus, the first step of doing this

characterizes the environment.

State Space is an entire and comprehensive explanation of

the environment that the intelligent agent will perform within,

containing:

1) Physical space layout example: building/space

measurements;

2) Inner spacing layout example: shelf details;

3) Constraints example: relative allowed distance;

4) Obstacles (permanent or temporary) example:

columns/sculptures, or maintenance.

5) Limitations example: moving objects.

Action Space is a complete list of available actions and

events within the given environment. These can be

categorized into two main groups:

General/simple actions:

Examples: MoveForward (), MoveBackward (), MoveLeft

(), MoveRight ().

8 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

For the intelligent agent in the environment, to get the

commanded task, assume that the environment is collected of

a set of finite states, Set S={s1, s2…}.

The intelligent agent should transfer from one state to

another when given the transition task of producing an event

in which the environment contains a set of finite occurrences.

Set E={e1, e2, …}.

The main task in this environment will contain a subtask

sequence of states and events. Main Task t: S1 �
e1

 S2 �
e2

 S3

�
e3

 S4 �
e4

... �
en-1

 Sn

Let t be a set of all such possible tasks and the transition

between two states contain the event: TR: 2S�e1

Figure 8. Environment Proposed model.

Figure 8 illustrates the environment-proposed model, which

contains a single intelligent agent. The intelligent agent could

interact with the environment and so perform the task;

moreover, intelligent agent transitions between states until the

task is complete.

S is a set of states and E is a set of events performed by a

agent in the environment; t is a task done by the agent and the

task contains many transitions among the state and doing the

event in each of the two states. The s1 is the current state to

agent.

The environment contains of a set of states and events, the

transitions and the initial state, and intelligent agent.

Environment={S, E, A, t, s1}.

An example of the state transition of an environment is

represented in Figure 9; the arcs among two states

demonstrate the sets of actions corresponding to transitions.

Every state in the graph is the object of a class and the state

S2, S3, S4, S5, S6, and S7 are the bookcase in a proposed

model; the state S1 is a table in the library and S0 is the initial

state mean, the current position of agent.

The agent’s moves are detected based on the task given,

such as the user need to bring a book, exchange it between two

books, or return it. When the agent is given the task, he can

then interact with the environment until he reaches the goal.

Figure 9. Transition in the Environment (state, event).

The environment state transition is presented by the graph

in Figure 9. In this environment, an intelligent agent controls

many available actions, and the intelligent agent in the

environment is not allowed to execute the same action twice.

Arcs between the states in Figure 8 show the actions that affect

the state transitions.

Note: the start position of the intelligent agent state S0 for

each goal.

1) Goal1={S3}

An intelligent agent can constantly reach goal1 by

performing an action in the start position of the intelligent

agent, choosing an action e10, e9, e8, e7, e6, or e11; the result

of which will be either S2, S3, S4, S5, S6, or S7. If S5 results,

the intelligent agent can perform e13, e26, e21, e18, e2, or e14

the result of which will be either S2, S3, S4, S6, S1, or S7. The

S3 result can simply perform e18.

2) Goal2={S3}

An intelligent agent can reliably achieve goal2 by the

performing action in the start position of intelligent agent

choice of the actions e10, e9, e8, e7, e6, or e11, the result of

which will be either S2, S3, S4, S5, S6, or S7. If S2 is a result,

the intelligent agent can perform e22, e24, e21, e16, e5, or e23,

the result of which will be either S5, S3, S4, S6, S1 or S7. If S1

is a result, it can simply perform e5, which is not allowed.

Mean does not allow it to go to the table before it finds the

book.

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 9

Declare the main process, in memory of the intelligent

agent; when given the task, the first step is to determine the

task and determine how to reach that goal. The next step is

then to analyze the knowledge in the environment state space

and action space, which are related to the goal.

The intelligent agent is able to recognize the surrounding

environment from any perspective and identify the necessary

subtasks, organizing them into a sequence, then execute them.

The start and end point based on the position of the intelligent

agent for each subtask is located then the path is planned and

the road is tested for obstacles, to determine the procedure

needed to reach that goal. Finally, the task representation is

stored in the knowledge base. Figure 9 shows the control data

flow diagram for the task when ordering the Bring Book ID or

Bring Book by Name.

Since the primary task of the intelligent agent model is to

find and get an object, the user first inserts the object’s

characteristics. In the case of the library environment, the

object’s features could feature many aspects, e.g. as the name

of the book, its number, and place. Resultantly, the intelligent

agent seeks the object’s accessibility in relation to the

experience, i.e. in this instance, dynamic knowledge. If it is

present, the intelligent agent moves to the next phase in order

to complete the job. If not present, the intelligent agent

instigates the process ‘fillIndexQueue’, executing the job in a

specific order to achieve the target within the environment.

When ordering an object’s ID, the first step is the intelligent

agent’s search for the availability, in relation to the experience,

i.e. in this instance, dynamic knowledge. If it is present, the

intelligent agent moves to the next phase in order to complete

the job. The intelligent agent understands the book’s path

within the stored knowledge base due to prior experience.

When taking another action, for example, replacing books,

the agent brings the data up to date by utilizing dynamic

knowledge. Learning from experience, the agent selects the

most appropriate response at the right time. In addition, an

agent can interplay within the environment with no support

from the user or guidance for making decisions. In Figure 10,

the state transitions are exhibited, demonstrating the

progression for start-up and presenting processing and

intelligent behavior interactions.

Figure 10. The Control Data flow diagram for the task when ordering Bring Book ID.

10 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

Figure 11. A diagram of the states’ interaction with transitions.

To inform the agent about the requirements of the user the

detection of the task is necessary, the agent then begins

interacting within the environment. The initial function is the

loan check to see if the book has been loaned out or not. If it

has not been loaned the next procedure is to find the book. It

must first be checked if book in dynamic knowledge mean in

experience to agent by the procedure Is It In My Memory if

agent exists book in experience then go to the procedure Fill

Index Queue and put the first number in queue number

bookcase exist object in dynamic knowledge else if it does not

exist in experience then continue and fill the queue

intelligently.

The main task can then be carried out: execute the sub-task

in queue, procedure “Move To”, find the bookcase it needs to

go to, then carry out the action “Which_Crose”, and check if

any obstacles intersect with the path when going to the

bookcase.

Function Dos It Cros has four functions: Function TestX1,

Function TestX2, Function TestY1, and Function TestY2.

Each calculates whether the intersection path has an obstacle

or no intersection.

The Direct Or Reverse function checks any direction go

agent for the most efficient time and the shortest possible path.

Timer1 executes the walk: each step is 0.01 seconds and

then it calculates the next point in the line until the walk

arrives at the end point; use the function get Next Pont to

calculate the next point in line, then move to the next point

until the end point via the procedure Move Agent. On arrival

at the first target, the agent carries out a subtask to find the

required object and match it to another object on the bookcase,

then find the object and go to the table or continue to execute

the next task in the queue.

The structure of the class is utilized to demonstrate the

environment within the knowledge base. This is reliant on

three kinds of knowledge representations; the production rule

and semantic frames and net in which every object is an

instance of a class containing the following attributes and

methods of the object within the environment:

1) Attributes: Things exist in the object and cannot be

separated because of the object’s properties and are

concomitant with the object.

a) The object position: each object contains many

properties, describes the properties in the class, and

each object has a position in environment.

b) The length and width of the object: this attributes for

each object in the environment, consisting of the

dimension’s length and width.

c) Name: each object has a name.

2) Methods:

Methods of the object: what we can do to the object,

anything that could be implemented by the object, such as

intelligent agent, can move in the environment between the

two states.

An object can be used to denote anything. It could be a

concrete concept such as a book, a table or a bookcase. A class

provides a framework for characterizing a type of object.

The class is the blueprint. An object is an instantiation of a

class. For instance, a bookcase has features, such as the

number of shelves or ID number. The class 'bookcase'

provides a generic description using features, but an instance

is an object that has values assigned to these features. The

word 'property' is used to denote an attribute of an object.

Agent

Function

Loaned

Function

DosItCros

Function

TestY1

Function

getNextPont

Function

Which_Crose

Procedure

moveAgent

Function

DirectOrReverse

Procedure

MoveTo

Procedure

fillIndexQueu()

Procedure

IsItInMyMemory

Procedure

find_book

Function

TestY2

Function

TestX2

Function

TestX1

Timer1

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 11

Properties are pieces of information about an object, such as

color, size, or number of shelves. Methods describe behavior

because they state what an object can do, for example, an

intelligent agent object that might have been moved describes

the task content; the number of moves is a property. Figure 11

shows the Inheritance Class Structure for the whole object in

the environment.

The class represents the object in the environment; each

class concerts the blueprint of an object in the environment.

Figure 12. Inheritance Frame Structure.

Figure 12 presents the main algorithms as processes for the

proposed model as a knowledge-based system for one process

in the queue, which mimics human behavior (a librarian in this

implementation) to recognize an object, in this case, a book in

the environment (library) using the following steps:

The first step is a full description of the existing

environment through the knowledge base, which will be

described as state space and action space, and the existing

storage environment.

The second step is to allow the intelligent agent model to

understand and analyze the nature of the environment through

the interaction of the user with their existing knowledge base,

so we can plan the movement and complete the task of

reaching the desired book.

The third step represents the path that draws the action of

event and reaches the goal according to the book in the

requirement

The functions and algorithms are utilized by the intelligent

agent’s inference engine. They are also utilized to attain

knowledge deriving from the state space of the problem, the

problem space of the environment, and particular tasks are

achieved by the state space of the actions; these algorithms

will be explained in this section.

Since the primary task of the intelligent agent model is to

find and retrieve an object, s the user first inserts the object’s

characteristics. In the case of the library environment, the

characteristics of an object has several aspects, e.g. the name

of the book, its number, and where it is placed. Resultantly, the

intelligent agent looks for the book’s availability in relation to

its working memory and dynamic knowledge. If it is present,

the intelligent agent moves to the next phase in achieving the

job. If it is not present, the intelligent agent initiates the Fill

Index Queue procedure.

The procedure Fill Index Queue is used to arrange all the

sub-tasks of the main one to be performed by the intelligent

agent as seen in Figure 13.

12 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

Figure 13. Primary Algorithms as a Series of Actions within the Knowledge-based System.

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 13

Figure 14. Procedure Fill Index Queue.

The inquiring search method is carried out as the function

Gen New Queue. Its task is to determine a quicker, but not

necessarily optimal, solution. These techniques are often

reliant on acquiring knowledge, which is found within the

problem space. Therefore, this function will depend on the

weight of an object in its environment. Using initialization

weight, it sorts all the weights to each object in all positions in

the environment, as seen in Figure 14, so the general structure

of the heuristic function is:

F (n)=g (n) + h (n)

g (n)=the search technique returns the weight of an object in

the sub-environment

h (n)=the heuristic information for the object n

Figure 15. Function for the Heuristic search Technique.

Figure 16. Heuristic Function.

Within the enviornment, every object has a weight value

and this initial value alters due to object transitions; these

objects are all linked to the object-environment, as seen in

Figure 15.

In Table 2, the two-dimension array is explained. This

comprises of the objects’ transition weights. When it is

required to occupy the whole of the queue, the bookcase must

be rearranged into required visits, depending on the maximum

weight in each column with the contained object needed.

Table 2. The two dimensions array.

Bookcase/object Object1 Object2 Object3 … … … … … Objectn

Bookcase1 Weight11 Weight12 Weight13 Weight1n

Bookcase2 Weight21 Weight22 Weight23 Weight2n

Bookcase3 Weight31 Weight32 Weight33 Weight3n

Bookcase4 Weight41 Weight42 Weight43 Weight4n

Bookcase5 Weight51 Weight52 Weight53 Weight5n

Bookcase6 Weight61 Weight62 Weight63 Weight6n

Using a sorting algorithm is efficient for small arrays and it

is used to sort the weight of each object in all sub

environments. Therefore, this function insertion sorts as seen

in Figure 16.

14 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

Figure 17. The pseudo code for sorting insertion.

As mentioned in the scenario, the intelligent agent should

specify the start and end points. To recognize a start point, an

algorithm is made. As shown in Figure 17, the start point is the

initial state (the intelligent agent’s starting position) for the

transition between the initial state changes when moving from

one state to another to perform a specific task, the end point of the

task1 is the starting point of the task2, and so on, in each transition.

Figure 18. Start Point Finding Algorithm Pseudo code.

This algorithm is similar to the previous one, which was

used to recognize the end point. An algorithm was made (as

shown in Figure 18) to find the end point in the final state

(position of target) for the transition between states. The end

state changes when moving from one state to another to

perform a specific task. The start point of the task2 is the end

point of the task1, and so on in each transition

Figure 19. End Point Finding Algorithm Pseudo code.

As in the scenario, the start point should be in the main path

of the targeted object. All of its pixels are then apart from the

main path pixels.

As shown in Figure 19, to find the main path, the algorithm

needs to get to the next point from the line between the start

point and the end point.

Figure 20. Main Path Finding Algorithm Pseudo code.

The Intelligent Agent finding the shortest path-finding

algorithm used in this thesis needs to detect the minimum

distance between two points, using a well-known

mathematical equation of distance between two points:

� � ��� ! �"# $ �% ! %"#

Where:

D: The distance between two points

(�1, %1): The start point

(�2, %2): The Goal point

Trying to obtain the shortest path, the algorithm will

calculate the minimum distance between (goal point) and all

pixels through the path starting from the (start point). The

algorithm initially takes the first location (start point) and

finds the distance between it and the (goal point), then it

calculates the next point in line of the current point (start

point). The algorithm will continually calculate the pixels

one-by-one and choose the pixel that satisfies the least

distance between the selected pixel and the (goal point) The

algorithm will repeat this process on each line in the main path

between the two states until the last point of the (goal point).

The function explains the next step to the intelligent agent,

which must move to reach the target as shown in Figure 20.

Figure 21. The function ‘get Next Point’.

If the next point in line is calculated from the current point

(start point) and the algorithm will continually calculate the

pixels one-by-one and choose the pixel that satisfies the least

distance between the selected pixel and the (goal point). The

algorithm will repeat this process on each line in the main path

between the two states until the last point of the (goal point).

Index is the step of the agent divided by the length of the

distance between the start point and the end point.

Index=1/ lingth

 American Journal of Artificial Intelligence 2021; 5(1): 1-16 15

Length=��&. � − '. �# + �&. % − '. %#

X=start.x + index * (end.x – start.x)

Y=start.y + index * (end.y – start.y)

Next point (X, Y)

Find next point
1 1

(,)x y to the Current point, in line

between two states. Each step to the agent is executed in 0.01

seconds; the next calculate state each transition to next state

when count final equal one then line finish then go to next line

or if not contain next line mean that is current position is a

target.

The execution of the main task can start and the execution

of the sub-task is in the queue. Use the procedure MoveTo,

detect the bookcase that it needs to go to, then carry out

Which_Crose to analyze whether there are any obstacles

intersecting with the planned path on its way to the bookcase.

DosItCros calls for four functions: Function TestX1,

Function TestX2, Function TestY1 and Function TestY2.

These are calculated if the intersection path has obstacles but

not an intersection.

To achieve the significance of X1, X2, Y1, and Y2 the

subsequent functions along with equation calculations can be

checked at any intersection point of the obstacles that are

present within the environment.

()*'� = �+,-./012	1+0/.3+4.567./8.	9+-3.3+4.5#
�:4;	9+-3.3+4.567./8.	9+-3.3+4.5#

<1 � =>?@>	AB&C>CB). % $ ()*'� ∗ �E)*	AB&C>CB). % ! =>?@>	AB&C>CB). %#F (1)

()*'� � �+,-./012	1+0/.3+4.5G+,-./012.H3;.I#67./8.	9+-3.3+4.5
�:4;	9+-3.3+4.567./8.	9+-3.3+4.5#<2 � =>?@>	AB&C>CB). % $ ()*'� ∗ �E)*	AB&C>CB). % ! =>?@>	AB&C>CB). %#F (2)

()*'� � �+,-./012	1+0/.3+4.J67./8.	9+-3.3+4.J#
�:4;	9+-3.3+4.J67./8.	9+-3.3+4.J#K1 � =>?@>	AB&C>CB). � $ ()*'� ∗ �E)*	AB&C>CB). � ! =>?@>	AB&C>CB). �#F (3)

()*'� � �+,-./012	1+0/.3+4.JG+,-./012.L23MI.#67./8.	9+-3.3+4.J
�:4;	9+-3.3+4.J67./8.	9+-3.3+4.J#K2 � =>?@>	AB&C>CB). � $ ()*'� ∗ �E)*	AB&C>CB). � ! =>?@>	AB&C>CB). �#F (4)

Because X1, X2, Y1, and Y2 as values, are omitted in all

functions, the task is examined in contrast to those that result

across the examination of all obstacles. The planned route is

used to achieve the target. If an intersection passes the

obstacle, or if an intersection is not present, it will and if there

is not, it will carry on moving towards the target.

Direct Or Reverse checks any direction go agent if have

best time and shortest path.

The walk is executed by Timer1, and each step takes 0.01

seconds. It calculates the subsequent point ne until arriving at

the final point; GetNextPoint is used to calculate the

subsequent point. It then moves towards the final point using

MoveAgent. On arrival at the first target, a sub-task is

performed by the agent which is to seek the required object

and match it with another on the bookcase. If it finds the object,

then it will go to the table. Otherwise, it will continue to carry

out the subsequent queued task.

In Table 3, a comparison of the three methods is exhibited:

the shortest possible path, the most efficient time, and the

negative methods.

Table 3. Comparison between three techniques.

Performance When filling randomly When using the Intelligent Code When using a Heuristic Search

Competency 48% 97% 95%

Negatives It takes a very long time.
For every object, there has to be an intelligent code. This must not change its

position within the environment within which the object is constructed.
None

The most efficient method is the heuristic search. This is due

to the fact it is unrelated to constraints. Changes to the

environment are able to interplay with alterations and provide a

faster result.

5. Conclusion

Environmental characteristics are crucial, particularly

within the intelligent agents’ program design. The initial step

should identify the job’s environment along with the

maximum number of characteristics. Task environments are

varied across many important dimensions. They are partly or

completely observable, stochastic or deterministic, sequential

or episodic, dynamic or static, continuous or discrete, and can

be multi- or single-agent. Resultantly, it is recommended that

construction starts with identical rules, regardless of the

amount of time it takes. Progressive research methods are

appropriate for intelligent agents facing life’s function

problems. This work presented the hierarchical structure of the

environment for the proposed model library and presented the

object that contains the library. The main algorithms that used

for the proposed model is a knowledge-based system for one

process in the queue, which mimics human behavior (a

librarian in presented case). In addition, it used a heuristic

search technique to find a quick solution which our results are

achieved because it is not related to any constraints and any

changes in the environment.

With respect to work in the future, considering complex

16 Safa'a Yousef Abu Hadba and Ibtehal Nafea: An Intelligent Agent Model and a Simulation for a

Given Task in a Specific Environment

environments with stochastic and multi-agents is highly

recommended. The environment should be collaborative,

cooperative, and competitive and intelligent agents will work

together as a cell (single unit).

References

[1] Zeigler, B. P. (2014). Object-oriented simulation with
hierarchical, modular models: intelligent agents and
endomorphic systems. Academic press.

[2] Wooldridge, M., & Dunne, P. E. (2001, August). The
computational complexity of agent verification. In
International Workshop on Agent Theories, Architectures, and
Languages (pp. 115-127). Springer, Berlin, Heidelberg.

[3] Balduccini, M., & Lanzarone, G. A. (1997). Autonomous
semi-reactive agent design based on incremental inductive
learning in logic programming. Proc. of the ESSLI, 97,
1-12.

[4] Niels, B. A. (2002). A model for Procedural Knowledge, PhD
thesis, University of Nyenrode, Breukelen.

[5] Thorndyke, P. W., & Goldin, S. E. (1983). Spatial learning and
reasoning skill. In Spatial orientation (pp. 195-217). Springer,
Boston, MA.

[6] Jennifer Herron (2017) Intelligent Agents for the Library,
Journal of Electronic Resources in Medical Libraries, 14: 3-4,
139-144, DOI: 10.1080/15424065.2017.1367633.

[7] Den Heijer, F. M., & Goede, R. (2014). Implementing an
intelligent agent in a known, observable, discrete and
deterministic environment using a scriptable game-engine. In
Intelligent Systems and Agents 2014 Conference (ISA 2014),
in press, Lisbon, Portugal.

[8] Owaied, H. H., & Abu-A'ra, M. M. (2007, June). Functional
Model of Human System as Knowledge Based System. In IKE
(pp. 158-164).

[9] Barjtya, S., Sharma, A., & Rani, U. (2017). A detailed study of
Software Development Life Cycle (SDLC) models.
International Journal Of Engineering And Computer Science, 6
(7), 22097-22100.

[10] Abuhadba, S. (2011). An Intelligent Agent Model and a
Simulation for a. Given Task in a Specific Environment.
Supervisor. Dr. Hussein H. Owaied.

[11] Shah, S., Lynch, L. M., & Macias-Moriarity, L. Z. (2010).
Crossword puzzles as a tool to enhance learning about
anti-ulcer agents. American journal of pharmaceutical
education, 74 (7).

[12] Chen, B., & Cheng, H. H. (2010). A review of the applications
of agent technology in traffic and transportation systems. IEEE
Transactions on intelligent transportation systems, 11 (2),
485-497.

[13] Bekey, G. A. (2005). Autonomous robots: from biological
inspiration to implementation and control. MIT press.

[14] Dorf, Richard C., "Modern Control Systems, 7th edition"
(1995). Books by Marquette University Faculty. Book 184.
http://epublications.marquette.edu/marq_fac-book/184.

[15] McCorduck, P. (1983). The fifth generation: artificial
intelligence and Japan's computer challenge to the world.
Reading, Mass.: Addison-Wesley.

[16] Kumar, P. R., & Varaiya, P. (1986). Stochastic systems:
estimation, identification and adaptive control (Prentice-Hall
Information & System Sciences Series).

